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｜賴志煌教授：量子物理講義｜ 

【Chapter 5 Quantum Mechanics】 

  

 

 

 limitation of Bohr theory: 

1. Can not explain why certain spectral lines are more intense 

than others. 

2. many spectral lines actually consist of several separate lines 

whose λ differ slightly. 

3. an understanding of how individual atoms interact with one 

another to from macroscopic matters   Quantum 

mechanics(1925~1926) 
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【5.1 Quantum Mechanics】 

 Classical mechanics   future history of a particle is 

completely determined by its initial position & momentum 

together with force. 

Quantum Mechanics   suggest the nature of an observable 

quantity   uncertainty principle    probabilities  

classical mechanics is an approximate version of quantum 

mechanics  

Wave function φ. 

 2   probability of finding the body for complex φ   

 2=φ*φ*(φ*: complex conjugate) 

φ=A+iB   φ*=A-iB   φ*φ=A2+B2 

 “well behaved” wave function 

(1) φmust be continuous & single-valued everywhere 

(2) 
zyx 







 
,, must be single valued & continuous(for 

momentum consideration) 

(3) φmust be normalization, which means thatφ must go to 0 as x 

       y      z        

 dv
2

  needs to be a finite constant 
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 2
  = probability density P 

11
2

 








dvpdv 
  normalization 

probability  
1

21

2

x

xx dxp   

 A particle in a box, φ=0 outside the box but in real case, 

never happen. 

 

 
Figure 5.1 Waves in the xy plane traveling in the +x direction along  

a stretched string lyingon the x axis. 
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【5.2 wave equation】 

t
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


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


  solution: y=F(t   x/v) 

consider a wave equivalent of free particles. 

    Y=Ae-iω(t-x/v){undamped(constant amplitude A), 

monochromatic( const ω), harmonic} 

Y=Acosω(t – x/v)-iAsinω(t – x/v) 

For a strenched string, only real part has significance. 

 

 

 
 

Figure 5.2 Standing waves in a stretched string fastened at both ends. 
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【5.3 Schrodinger’s equation : time dependent form】 

 for a free particle  )
(2)/(
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unrestricted particle of energy E & momentum P moving in 

+x direction 

(1) differentiating eq(A) for φ twice with respect to x 
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(2) differentiating eq(A) forφwith respect to t 
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Derived from free particle, but it is a general case. If U known 

    φcan be solved.  
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【5.4 Expectation value】 

 calculated the expectation value <x> 

  The value of x we would obtain if we measure the 

positions of a great many particles described by the same 

wave function at time t and then average the results. 

 The average position x  of a number of identical particles 

distributed along x axis. 

N1 at x1 , N2 at x2 ;…………… 





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

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321

332211  

 If along with a single particle, 

replaced Ni by probability Pi 














dx

dxx

x
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

 

If φ is a normalized function 






 1
2
dx  

Expectation value of position
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【5.5 Schrodinger’s equation: steady-state form】 

for one-dimensional wave function Ψ of an unrestricted particle 

may be written 

      tiEx
ip

tiEpxEti

eeAeAe 









   

Ψ is the product of a time-dependent function 
 tiE

e 


and a 

position-dependent functionψ 

If Ψ=F(x)×F'(t) 

The time variations of all wave functions of particles acted on 

by stationary forces have the same form as that of an 

unrestricted particle. 

∵ substituting  tiE

e 


   into time-dependent eq 
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Steady-state Schrodinger eq in 1-D 
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** For Schrodinger’s steady-state eq, if it has one or more 

solutions for a given system, each of these wave functions 

corresponds to a specific value of energy E.   energy 

quantization 

 

 Considering standing waves in a stretched string of length L 

that is fixed at both ends. 

  these waves are subject to the condition(boundary condition) 

that y=0 at both ends. 

∵φ & 
x


 need to be continuous, finite, and single-value 

  λn=2L/n+1 , n=0,1,2,3…… 

combination of wave eq & boundary condition. 

y(x,t) can exist only for certainλn 

 

Eigenvalues & Eigenfunctions 

The value of energy En for which Schrodinger’s steady-state eq 

can be solved are called eigenvalues and the corresponding 

wave functions φn are called eigenfunctions. 

 



 9 

 The discrete energy levels of H atom 

.,.........3,2,1,
1
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are an example of a set of eigenvalues. 

In addition to E, angular momentum L is also quantized. In H 

atom, the eigenvalues of the magnitude of the total angular 

momentum are   )1..(..........3,2,1,0,1  nlilL   

 A dynamic variable G may not be quantiaed. 

measurements of G made on a number of identical systems 

will not yield a unique result but a spread of values which 

average is expectation value. 

 




 dxGG
2

  

for example, in H atom, position x is not quantized. 
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【5.6  particle in a box】 

 the motion of a particle is confined between x=0 & x=L by 

infinitely hard wall(it U(0)=U(L)=∞) 

 A particle does not lose energy when it collides with hard 

walls. 

 
Figure 5.3 A square potential well with infinitely high barriers at each end 

 

 

 φis 0 for x Lx  &0  

within the box: )24.5)........(0(0
2

22

2

 UE
m

dx

d






 

eq(5.24) has the solution 

            x
mE

Bx
mE

A


2
cos

2
sin    
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B.C.  φ=0 at x=0 & x=L 

∵cos0=1     B=0  (∵φ(x=0)=0) 

 nL
mE

Lx 


2
0)(    n=1,2,3,………. 

  energy of particle can have only certain values 

    eigenvalues      energy levels 

En=
2
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n 
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    these eigenfunction meet all requirements 

    φn is a finite, single-valued, and 
x

n
n


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 &  continuous 

(except at the ends of the box) 

 To normalize φ 
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*
L

xn

L
n


 sin

2
         

φn may be “-“ , but 2

n  is “+” 

(∵ 2

n  is probability density of finding the particle) 

*when n=1 , the particle most likely to be in the middle of the 

box but when n=2 , 2

n  =0 in the middle of the box. 

Ex 5.3    

Find the probability that a particle trapped in a box L wide can 

be found between 0.45L & 0.55L 

For n=1 & n=2 

 
Figure 5.4 Wave function and probability densities of a particle 

confined to a box with rigid walls. 
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Figure 5.5 The probability Px1x2 of finding a particle in the box of  Fig. 5.4 between x1 = 0.45L and 

x2 = 0.55L  is equal to the area under the |Ψ|
2
 curves between these limits. 

 

Classically, we expect the particle to be in this region 10% of 

the time (
 

1.0
45.055.0




L

L
 ) but QM gives different prediction 

depending on n 

2

1

2

1

2

1

21

2
sin

2

1

2
sin

2 2

2

,

x

x

x

x

x

x

nxx

L

xn

nL

x

dx
L

xn

L

dxP



























 



 14 

∴ for n=1  , Px1 x2=19.8% 

n=2  , Px1 x2=0.65% 

 

ex 5.4 

Find <x> of the position of a particle trapped in a box L wide 

<x>=

 
 











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
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

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



 

Middle of the box !!
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【5.7 finite potential well】 

*Potential energies are never ∞ consider potential wells with 

 barriers of finite height 

 

Figure 5.6 A square potential well with finite barriers. The energy E of the trapped particle is less than 

the height U of the barriers. 

 

*Particle energy E<U 

classical mechanics: when particle strikes the side of the well, it 

bounces off without entering regions In QM, it has a certain 

probability of penetrating into regions Ⅰ&Ⅲ 
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*In Ⅰ&Ⅲ 

 
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
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
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
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2

 
Figure 5.7 Wave functions and probability densities of a particle in a finite potential probability of 

being found outside the wall. 
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φⅢ = Ceax+De-ax             ∵e-ax   ∞ when x    -∞ 

eax       ∞  when x    ∞  

∴ B=C=0  φⅠ=Aeax , x<0 φⅢDe-ax ,x>L 

** these wave functions decrease exponentially inside the 

barrier. 

Within the well 

φⅡ x
mE

Fx
mE

E


2
cos

2
sin 

 

∵φ is continuous             

∴φⅠ(x=0)=φⅡ(x=0)         φⅡ(x=L)=φⅢ(x=L) 

∴ A=F                           = De-aL 

                             solve E (E≠0) 

x


 at x=0 & x=L is continuous 

Combining these B.C.   solve complete wave function 

 

**Because the wavelengths that fit into the well are longer than 

for an infinite well of the same width   particle momentum 

are lower (∵P=h/λ)   En are lower than they are for a particle 

in an infinite well   The wave function penetrates the walls, 

which lowers the energy levels. 
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【5.8 Tunnel effect】 

Particle strikes a potential U(E<U) the barrier has finite width 

(see Fig 5.8)   particle has non-zero probability to pass 

through the barrier & emerge on the other side. 

Ex: tunnel diode: e' pass through potential barrier even though 

their KE<barrier height 

 In region Ⅰ&Ⅲ  U=0 
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 
 
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








  k1=



22




pmE
   (eq 5.43) 

∴eq 5.43 the same as particle in a box 

xik
Ae 1

1    represents incoming wave 

xik
Be 1

1



    represents reflected wave 

 

Figure 5.8 When a particle of energy E < U approaches a potential barriers, according to classical 

mechanics the particle must be reflected. In quantum mechanics, the de Broglie waves that 

correspond to the particle are partly reflected and partly transmitted, which means the particle has 

a finite chance of penetrating the barrier. 
Figure 5.9 At each wall of the barrier, the wave functions inside and outside it must match u 

perfectly, which means that they must have the same values and slopes there. 
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 φⅠ=φⅠ+ +φⅠ- 

φⅢ+  = xik
Fe 1  represented transmitted wave in region Ⅲ nothing 

could reflect the wave  

 0G  φⅢ=φⅢ+= xik
Fe 1  

 v1= is the group velocity of incoming wave (equal to v of 

particles) 

 vS
2

1  

is the flux of particles that arrives at the barrier,  

 S= # of particles/m2sec (
sec

#
3

m

m
) 

 Transmission probability 
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
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classically T=0 ∵E<U 

In region Ⅱ  Sch. Eq. 
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(same as finite potential well) 

∵exp are real quantitiesφⅡ does not oscillate and
2

 is not 

zero  

  particle may emerge into Ⅲ or return toⅠ 
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Applying B.C. 

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
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  (see Fig 5.9) 

at x=L  φⅡ=φⅢ 

       dφⅡ/dx =dφⅢ/dx 

      A+B=C+D 
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also assume L is wide enough   k2L>>1 
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【5.9 Harmonic oscillator】 

Harmonic motion: the presence of a restoring force that acts to 

return the system to its equilibrium configuration when it is 

disturbed. 

In the special case, the restoring force F follow Hook’s law   

F=-kx   -kx= 0
2

2

2

2

 x
m

k

dt

xd

dt

xd
m  

 

   tAx 2cos  

m

k




2

1
   frequency of harmonic oscillator 

A: amplitude 

Φ: phase angle depends on what x is at   t=0 

In most of cases, restoring forces do not follow Hook’s low, but 

when only consider a small displacement of x     restoring 

force can be exercised by Hook’s low. 

  Any system in which something executes small vibrations 

about an equilibrium (eqm) position behaves like a simple 

harmonic oscillator.  
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.Maclaurin’s series  

F(x)=Fx>0 + (
dx

dF
)x=0 X + 1/2(

2

2

dx

Fd
)x=0 X

2 + 1/6(
3

3

dx

Fd
)x=0 X

3 + …… 

∵ x=0 is eqm position Fx=0=0 

for small x x2,x3 is much smaller than x F(x)=(dF/dx)x=0 X 

for restoring force (dF/dx)x=0 is negative Hook’s law 

.potential energy U(x)=-∫ x

0 F(x)dx= k∫ x

0 xdx=1/2kx2 

.Sch. eq.   

2

2

y

 
 + 2m/ 2(E-1/2kx2)φ=0……(5.75) 

let  c=(1/ km)1/2, y=(1/ km)1/2x=cx 

2

2

y

 
= 






































c

yxx

y

yx


 

   =
2

2
2

y
c

x

y

yy
c
































 
 

eq5.75 c2 
2

2

y

 
+2m/  2(E-1/2kx2)φ=0  

  
2

2

y

 
+2E/ ( km / φ)- mk /  ×  x2φ=0   

   let α=2E/ ( km / ) 

∴Sch eq (5.75)     74.5......02

2

2








y

y
 

for this eq, when y   ∞ φ   0 

for ∫ 



2
 dy=1 
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*for(5.78) only when α=2n+1   n=1,n=2,n=3…… 

can satisfy all conditions 

∵α=2E/ ( km / )=2E/hν & α=2n+1 

∴En=(n+1/2)hν   n=0,n=1,n=2…… 

energy levels of Harmonic oscillator 

Zero point energy  E0=1/2(hν)  ∴when T   0 E   E0 not 

0 

Figure 5.10 The potential energyof a harmonic oscillator is pro-portional to x2, where x is the 

displacement from the equilib-rium position. The amplitude Aof the motion is determined by 

the total energy E of the oscilla-tor, which classically can haveany value. 

Figure 5.11 Potential wells andenergy levels of (a) a hydrogenatom, (b) a particle in a box, and 

(c) a harmonic oscillator. In eachcase the energy way on the quantumnumber n. Only for the levels 

equallyspaced. The symbol  means “isroportional to”. 

Figure 5.12 The first six harmonic-oscillator wave functions. The vertical lines show the limits 

-A and +A between which a classical oscillator with the same energy will vibrate. 

Figure Probability densities for the n = 0 and n = 10 states of a quantum-.mechanical harmonic 

oscillator. The probability densities for classical harmonic oscillators with the same energies are shown 

in white. In the n = 10 state, the wavelength is shortest at x = 0 and longest at x = -A. 

 

 

 

Operators, eigenfunctions & eigenvalues 
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∵φ=φ(x,t), In order to carry out the integrations 

  we need to express P&E as functions of x,t 

but
2

&
2


 xExp  

∴no function as p(x,t)&E(x,t) 

  Integration form is not suitable for <P> <E> 

for free particle  
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expectation value 

of an operator         




 dxGpxG ,  

eigenvalue eq.      nnn GG    

Hamiltonian operator  

nnn EH

U
xm

H

 





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2

22
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*Particle in a box 
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 momentum 
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  ± means that the particle is moving back & forth 
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  ﹡Find momentum eigenfunction 

  nnn pp      
dx

d

i
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
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L
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L
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
 sin

2
  

  φn is not momentum eigenfunction 
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